190 research outputs found

    Spatially resolved quantitative rheo-optics of complex fluids in a microfluidic device

    Get PDF
    In this study, we use microparticle image velocimetry (μ-PIV) and adapt a commercial birefringence microscopy system for making full-field, quantitative measurements of flow-induced birefringence (FIB) for the purpose of microfluidic, optical rheometry of two wormlike micellar solutions. In combination with conventional rheometric techniques, we use our microfluidic rheometer to study the properties of a shear-banding solution of cetylpyridinium chloride (CPyCl) with sodium salicylate (NaSal) and a nominally shear-thinning system of cetyltrimethylammonium bromide (CTAB) with NaSal across many orders of magnitude of deformation rates (10-2 ≤ math ≤ 104s-1). We use μ-PIV to quantify the local kinematics and use the birefringence microscopy system in order to obtain high-resolution measurements of the changes in molecular orientation in the wormlike fluids under strong deformations in a microchannel. The FIB measurements reveal that the CPyCl system exhibits regions of localized, high optical anisotropy indicative of shear bands near the channel walls, whereas the birefringence in the shear-thinning CTAB system varies more smoothly across the width of the channel as the volumetric flow rate is increased. We compare the experimental results to the predictions of a simple constitutive model, and we document the breakdown in the stress-optical rule as the characteristic rate of deformation is increased.National Science Foundation (U.S.) (Graduate Research Fellowship

    A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids

    Get PDF
    The relaxation processes of a wide variety of soft materials frequently contain one or more broad regions of power-law like or stretched exponential relaxation in time and frequency. Fractional constitutive equations have been shown to be excellent models for capturing the linear viscoelastic behavior of such materials, and their relaxation modulus can be quantitatively described very generally in terms of a Mittag–Leffler function. However, these fractional constitutive models cannot describe the nonlinear behavior of such power-law materials. We use the example of Xanthan gum to show how predictions of nonlinear viscometric properties, such as shear-thinning in the viscosity and in the first normal stress coefficient, can be quantitatively described in terms a nonlinear fractional constitutive model. We adopt an integral K-BKZ framework and suitably modify it for power-law materials exhibiting Mittag–Leffler type relaxation dynamics at small strains. Only one additional parameter is needed to predict nonlinear rheology, which is introduced through an experimentally measured damping function. Empirical rules such as the Cox–Merz rule and Gleissle mirror relations are frequently used to estimate the nonlinear response of complex fluids from linear rheological data. We use the fractional model framework to assess the performance of such heuristic rules and quantify the systematic offsets, or shift factors, that can be observed between experimental data and the predicted nonlinear response. We also demonstrate how an appropriate choice of fractional constitutive model and damping function results in a nonlinear viscoelastic constitutive model that predicts a flow curve identical to the elastic Herschel-Bulkley model. This new constitutive equation satisfies the Rutgers-Delaware rule, which is appropriate for yielding materials. This K-BKZ framework can be used to generate canonical three-element mechanical models that provide nonlinear viscoelastic generalizations of other empirical inelastic models such as the Cross model. In addition to describing nonlinear viscometric responses, we are also able to provide accurate expressions for the linear viscoelastic behavior of complex materials that exhibit strongly shear-thinning Cross-type or Carreau-type flow curves. The findings in this work provide a coherent and quantitative way of translating between the linear and nonlinear rheology of multiscale materials, using a constitutive modeling approach that involves only a few material parameters

    A novel role for syndecan-3 in angiogenesis.

    Get PDF
    Syndecan-3 is one of the four members of the syndecan family of heparan sulphate proteoglycans and has been shown to interact with numerous growth factors via its heparan sulphate chains. The extracellular core proteins of syndecan-1,-2 and -4 all possess adhesion regulatory motifs and we hypothesized that syndecan-3 may also possess such characteristics. Here we show that a bacterially expressed GST fusion protein consisting of the entire mature syndecan-3 ectodomain has anti-angiogenic properties and acts via modulating endothelial cell migration. This work identifies syndecan-3 as a possible therapeutic target for anti-angiogenic therapy.This work was funded by Arthritis Research-UK (Grant No. 19207) and funds from the William Harvey Research Foundation both to JRW

    Targeted Inactivation of p12Cdk2ap1, CDK2 Associating Protein 1, Leads to Early Embryonic Lethality

    Get PDF
    Targeted disruption of murine Cdk2ap1, an inhibitor of CDK2 function and hence G1/S transition, results in the embryonic lethality with a high penetration rate. Detailed timed pregnancy analysis of embryos showed that the lethality occurred between embryonic day 3.5 pc and 5.5 pc, a period of implantation and early development of implanted embryos. Two homozygous knockout mice that survived to term showed identical craniofacial defect, including a short snout and a round forehead. Examination of craniofacial morphology by measuring Snout Length (SL) vs. Face Width (FW) showed that the Cdk2ap1+/− mice were born with a reduced SL/FW ratio compared to the Cdk2ap1+/+ and the reduction was more pronounced in Cdk2ap1−/− mice. A transgenic rescue of the lethality was attempted by crossing Cdk2ap1+/− animals with K14-Cdk2ap1 transgenic mice. Resulting Cdk2ap1+/−:K14-Cdk2ap1 transgenic mice showed an improved incidence of full term animals (16.7% from 0.5%) on a Cdk2ap1−/− background. Transgenic expression of Cdk2ap1 in Cdk2ap1−/−:K14-Cdk2ap1 animals restored SL/FW ratio to the level of Cdk2ap1+/−:K14-Cdk2ap1 mice, but not to that of the Cdk2ap1+/+:K14-Cdk2ap1 mice. Teratoma formation analysis using mESCs showed an abrogated in vivo pluripotency of Cdk2ap1−/− mESCs towards a restricted mesoderm lineage specification. This study demonstrates that Cdk2ap1 plays an essential role in the early stage of embryogenesis and has a potential role during craniofacial morphogenesis

    On equilibrium in non-hydrostatic metamorphic systems

    Get PDF
    Metamorphic geology has accumulated a huge body of observation on mineral assemblages that reveal strong patterns in occurrence, summarized, for example, in the idea of metamorphic facies. On the realization that such patterns needed a simple explanation, there has been considerable a posteriori success from adopting the idea that equilibrium thermodynamics can be used on mineral assemblages to make sense of the patterns in terms of, for example, the pressure and temperature of formation of mineral assemblages. In doing so, a particularly simple implicit assumption is made, that mineral assemblages operate essentially hydrostatically. Structural geologists have studied the same rocks for different ends, but, remarkably, the phenomena they are interested in depend on non-hydrostatic stress. We look at the effect of such behaviour on mineral equilibria. With adoption of some plausible assumptions about how metamorphism in the crust works, the consequence of minerals being non-hydrostatically stressed is commonly second order in equilibrium calculations

    Interplay between elastic instabilities and shear-banding: three categories of Taylor–Couette flows and beyond

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatiotemporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the shear-banding flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. The criterion for purely elastic Taylor–Couette instability adapted to shear-banding flows suggested three categories of shear-banding depending on their stability. In the present study, we report on a large set of experimental data which demonstrates the existence of the three categories of shear-banding flows in various surfactant solutions. Consistent with theoretical predictions, increases in the surfactant concentration or in the curvature of the geometry destabilize the flow, whereas an increase in temperature stabilizes the flow. However, experiments also exhibit some interesting behaviors going beyond the purely elastic instability criterion.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Lack of Cul4b, an E3 Ubiquitin Ligase Component, Leads to Embryonic Lethality and Abnormal Placental Development

    Get PDF
    Cullin-RING ligases (CRLs) complexes participate in the regulation of diverse cellular processes, including cell cycle progression, transcription, signal transduction and development. Serving as the scaffold protein, cullins are crucial for the assembly of ligase complexes, which recognize and target various substrates for proteosomal degradation. Mutations in human CUL4B, one of the eight members in cullin family, are one of the major causes of X-linked mental retardation. We here report the generation and characterization of Cul4b knockout mice, in which exons 3 to 5 were deleted. In contrast to the survival to adulthood of human hemizygous males with CUL4B null mutation, Cul4b null mouse embryos show severe developmental arrest and usually die before embryonic day 9.5 (E9.5). Accumulation of cyclin E, a CRL (CUL4B) substrate, was observed in Cul4b null embryos. Cul4b heterozygotes were recovered at a reduced ratio and exhibited a severe developmental delay. The placentas in Cul4b heterozygotes were disorganized and were impaired in vascularization, which may contribute to the developmental delay. As in human CUL4B heterozygotes, Cul4b null cells were selected against in Cul4b heterozygotes, leading to various degrees of skewed X-inactivation in different tissues. Together, our results showed that CUL4B is indispensable for embryonic development in the mouse

    Viscosity Measurement in a Lubricant Film Using an Ultrasonically Resonating Matching Layer

    Get PDF
    A novel ultrasonic viscometer intended for in-situ applications in lubricated components is presented. The concept is based on the reflection of a shear wave at a solid-liquid boundary that depends on the viscosity of the liquid and the acoustic properties of the solid. Very little ultrasound energy can propagate into the oil at a metal-oil interface because the acoustic mismatch is great, and this leads to large measurement errors. The method described in this paper overcomes this limitation by placing a thin intermediate matching layer between the metal and the lubricant. Results obtained with this technique are in excellent agreement with expected values from conventional viscometers when Newtonian mineral oils are analysed. When complex non-Newtonian mixtures are tested, the viscosity measurement is frequency dependent. At high ultrasonic frequencies, over 1 MHz, it is possible to shear only the base oil, while to obtain the viscosity of the mixture it is necessary to choose a lower excitation frequency to match the dispersed polymer relaxation time
    corecore